This is an test for my blog on github
Let’s test some inline math $x$, $y$, $x_1$, $y_1$.
Here is an example MathJax inline rendering \( 1/x^{2} \), and here is a block rendering: \[ \frac{1}{n^{2}} \]
\[ E(v,h \theta) = \sum_i \]
\[x = {-b \pm \sqrt{b^2-4ac} \over 2a}.\] \[p(\mathbf{y})=\prod_{s=1}^{S}p(y_s|\mathbf{y}_{\pi(s)})\] \[\begin{align} A &= B \\\\ &= C \end{align}\] \[\begin{align} p(x|\theta) &= \frac{\tilde{p}(x)}{Z(\theta)} \\\\\ &= \frac{\sum\limits_{h} e^{-E(v,h|\theta)}}{Z(\theta)} \\\\ &= \frac{\sum\limits_{h} e^{-E(v,h|\theta)}}{\sum_{v}\sum_{h} e^{-E(v,h|\theta) }} \end{align} g\]